Transillumination fluorescence imaging in mice using biocompatible upconverting nanoparticles.

نویسندگان

  • Claudio Vinegoni
  • Daniel Razansky
  • Scott A Hilderbrand
  • Fangwei Shao
  • Vasilis Ntziachristos
  • Ralph Weissleder
چکیده

We report on a systematic study of upconverting fluorescence signal generation within turbid phantoms and real tissues. An accurate three-point Green's function, describing the forward model of photon propagation, is established and experimentally validated. We further demonstrate, for the first time to our knowledge, autofluorescence-free transillumination imaging of mice that have received biocompatible upconverting nanoparticles. The method holds great promise for artifact-free whole-body visualization of optical molecular probes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoswitching of bis-spiropyran using near-infrared excited upconverting nanoparticles.

Bis-spiropryran molecules were grafted onto the surface of upconverting nanoparticles. Fluorescence resonance energy transfer from the upconverting nanoparticles to the surface bis-spiropyran molecules triggered the transformation of the ring-closed bis-spiropyran to the ring-open bis-merocyanine forms.

متن کامل

Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging.

Fluorescence diffuse imaging (FDI) suffers from limited spatial resolution. In this Letter, we report a scanning imaging approach to increase the resolution of FDI using nonlinear fluorophores. The resolution of a linear fluorophore was compared with nonlinear upconverting nanoparticles (NaYF(4):Yb(3+)/Tm(3+)) in a tissue phantom. A resolution improvement of a factor of 1.3 was found experiment...

متن کامل

Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power.

We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic quantum yield that is utilized by upconverting nanoparticles for generating this near infrared upc...

متن کامل

Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources.

We report a group of optical imaging probes, comprising upconverting lanthanide nanoparticles (UCNPs) and polyanionic dendrimers. Dendrimers with rigid cores and multiple carboxylate groups at the periphery are able to tightly bind to surfaces of UCNPs pretreated with NOBF(4), yielding stable, water-soluble, biocompatible nanomaterials. Unlike conventional linear polymers, dendrimers adhere to ...

متن کامل

Fast and background-free three-dimensional (3D) live-cell imaging with lanthanide-doped upconverting nanoparticles.

We report on the development of a three-dimensional (3D) live-cell imaging technique with high spatiotemporal resolution using lanthanide-doped upconverting nanoparticles (UCNPs). It employs the sectioning capability of confocal microscopy except that the two-dimensional (2D) section images are acquired by wide-field epi-fluorescence microscopy. Although epi-fluorescence images are contaminated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics letters

دوره 34 17  شماره 

صفحات  -

تاریخ انتشار 2009